The Graph of y = ln(x) for <u>positive</u> AND <u>negative</u> values of x.

When we restrict ourselves to the **real numbers**, $\ln(-1)$ does not make sense because the graph only seems to exist for x > 0

However, if we allow *complex y values* we can actually find values of *ln(x)* for negative *x* values!

We know the three series for e^x , sin(x) and cos(x):

$$\begin{cases} e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{5}}{3!} + \frac{x^{5}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} \\ \cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} \end{cases}$$

So let us consider $e^{i\theta}$

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \dots$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} - \frac{i\theta^7}{7!} + \dots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots\right)$$

$$= \cos(\theta) + i\sin(\theta)$$
Or $cis(\theta) = e^{i\theta}$
If $z = rcis(\theta) = re^{i\theta}$

Then $ln(z) = ln(re^{i\theta})$ = $ln(r) + ln(e^{i\theta})$

So
$$ln(z) = ln(r) + i\theta$$

Now this is very interesting because if we let z = 1 + 0ithen r = 1 and θ is not just 0 but $2n\pi$ where $n \in Integers$ so $\ln(1) = 0 + 2n\pi i$ This means that for the graph y = ln(x)if x = 1 then y could be 0 or $\pm 2\pi i$ or $\pm 4\pi i$ or $\pm 6\pi i$ etc

real z

Also if we let z = -1 + 0ithen r = +1 and $\theta = \pi$ so $\ln(-1) = 0 + (2n + 1)\pi i$ This means that for the graph $y = \ln(x)$ if x = -1 then y could be $\pm \pi i$ or $\pm 3\pi i$ or $\pm 5\pi i$ etc

Somehow, the graph of y = ln(x) is not just the **RED** graph below but it also passes through all the marked points!

If z is just <u>any positive</u> real number z = x + 0i

then r = x and $\theta = 0, \pm 2\pi, \pm 4\pi$ etc This means the graph of $y = \ln(x)$ really consists of countless parallel graphs spaced at distances of $2\pi i$ to each other. The equations are $y = \ln(x) + 2n\pi i$

If z is a <u>negative</u> real number $z = -x + \theta i$ then r = |x| and $\theta = \pm \pi, \pm 3\pi, \pm 5\pi$ etc

This means the graph of y = ln(x) where x is a negative real number, really consists of countless parallel graphs also spaced at distances of 2π to each other. The equations are $y = ln |x| + (2n + 1)\pi i$

For better clarity, I will just include $y = ln(x) \pm 2\pi i$ for positive x values and for negative x values I will just include $y = ln |x| \pm \pi i$

This point is $(-1, \pi i)$ which shows $ln(-1) = \pi i$

This point is $(1, 2\pi i)$ which shows $ln(1) = 2\pi i$