PROJECT: THE STRANGE BEHAVIOUR OF THE GRAPH y = X"

| found this topic to be absolutely fascinating!
I was “playing around” with my graphing program looking at graphs of the
formy = xb where b is not just a whole number.
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This is the graph of Y = x?

\Q/ When | started increasing the
power b in steps of 0.1 a

strange thing happened.

The left hand side of the graph
just disappeared!

+ 1) For example, this is the graph
of y = X*°
7 / The right hand side of the graph
f Is becoming more curved as b
9./ increases.

For all values of b up to 2.9
there is no left hand side to the
graph!
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Suddenly, when b becomes 3,
the left hand side reappears

/ again and we have the graph of

+ /-9-/ y:X3
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... but as soon as b increases to
3.1, the left hand side
disappears again but the right

hand side continues to become
<—" more curved.

Thiscurve isy = X

As b is increasing the right
hand side is changing into

y =X’

Thisis y = X* and the left hand

\ / side has reappeared again.

Then as b increases further, the
left hand side disappears again!
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This graphisy = x*> and we

can see the right hand side
changing intoy = X as b
& increases to 5.
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So | have slowly increased the
power b from 2 to 5.

J This graphisy = x>

+ @ The right hand side of the graph
has gradually changed from
y=X’toy =X

The left hand side has only
appeared each time when b was
a whole number.




The big question is: “Where does the left hand side of the graph go to?”

If I consider y = x™° and let x =— 1, | find that (-1) *°= —i
Similarly (-1)** = —0.707 - 0.707i
and (-<1) " = +0.707 - 0.707i

This means that although the x values are just the real numbers on the x axis,
the y values have some imaginary parts!

This means we need to create a complex y plane instead of just a y axis.
Like this...
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Then to my utter delight, | found that the left hand sides of the graphs do not
disappear at all!



THEORY TO PRODUCE THE PURPLE PHANTOMS.

The way to work out these results such as (1) = —0.707 — 0.707i without a
calculator is as follows...

Firstly change (1) to polar form = (+1)cis(180) or in rads cis(n)

Now we use De Moivre’s theorem:

(-1) "* = (+1) "*cis(1.25%180) = cos(225) + isin(225) = — 0 .707 — 0.707i

So if the graph has the equation y = X" and we are using just negative x values
which have an argument of 180° or x rad.

(I would be using rads in the Autograph graphing program.)

So following the above method...

y=x" =|x|" x cis(nm)

The parametric equations for Autograph for just the left hand side of the
graphsare X =t, y = |t|" x cos(nz), z = |t|" x sin(nmx)

(NB the ordinary right hand side y = x" is writtenas x =t, y = t", 2= 0)

¥

Starting with the graph of
y=x'

| have coloured the right hand
side RED which stays in the X, y
plane.

The left hand side is coloured
PURPLE.
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(This process continues for the other x values between the whole numbers)
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...the equation here is:
y

When the power is 3

The equation here is:

the equation is...
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= 35

again in a plane perpendicular to

the purple section of the curve is
the x, y plane.

When the equation is Y

...continuing to rotate...
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curve is again back in the x

When the power is 4, the purple
plane and the equation is...
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When the power is 5, the purple

curve is again back in the x, y

plane and the equation is...

Watch this short video of the above explanation...

https://www.screencast.com/t/tws XrEQVIKQ



https://www.screencast.com/t/tw5XrEQVfKQ

In the above theory, | started with y = x* and started to increase the power.
When | reduced the power there were a few surprises!

I will have a quick look at INTEGER values of n first.

Starting again withn =1

This is the liney = x*

REALY

& 3
Nown =20
’ - - _ 0 - -
: Thls_lsy—x which is

4 PR the liney =1
| Y

Nown=-1

This is y = x~* which is
the well-known
g REAL rectangular hyperbola.




Nown=-2
Thisisy = x*
i Nown=-3
Thisisy =x°
Nown=-4
Thisisy =x*

Now | will start to reduce the value of n in smaller steps.

Starting fromn =1, | have reduced nto 0.7



Now n =0.7

Thisisy =x%’

The purple phantom has
stated winding itself into
the 3D space because of
the complex y values.

Nown=0.5
Thisisy = x % =vx

This is of particular interest
because it is the graph of

—— REAL X

y = \x which normally does
not exist for negative x values
but you can see the purple part
in the complex y plane.

Now n=20.2

Thisisy = x>

REALY

Nown=20

Thisisy=x°"=1

which is a horizontal line in

4; REAL X

the X, y plane again.
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See the following video:

Nown=-0.3

Thisisy =x~°°
| have rotated the graph for
easier viewing.

Nown=-0.5

oy —v-05 1
Thisisy =x =%
and the purple phantom is in

- the complex y plane at right

angles to the x, y plane.

VIDEO FOR GRAPHS of the form y = x”(-n)

https://www.screencast.com/t/'y5SHGBxIOmSZ



https://www.screencast.com/t/y5HGBxIQmSZ

