

Differential Equations and Mechanics

1st Order D.E. => Terminal Velocity

For a person jumping out of an aeroplane:Mass = \mathbf{m} Acceleration = $\mathbf{mdv/dt}$ Weight = \mathbf{mg} Resistance model: \mathbf{kv}^n Equation of motion ($\mathbf{\psi}$): $\mathbf{mg} - \mathbf{kv}^n = \mathbf{m} \, \mathbf{dv/dt}$

In Autograph, using Axes -> Edit Axes -> Labels Set the variables to (\rightarrow) t and (\uparrow) v Set the labels to t (sec) and v (m/s)

Place a **selected point** at **(0,0)** to start the solution Enter Equation: Name: Eqn of motion (\downarrow)

Equation: mg – kv^n = m dv/dt

Edit constants:

g = 9.81 m/s² (fixed, unless you go very high!)

k = 1 (can be varied by posture)

m = 80 kg (typical mass of an adult)

n = 2 (giving a squared model for air resistance) Startup Options: select **Point** – then OK

It will show the **slope field** with the default scales. Go to *Axes -> Edit Axes:* x: -2 to 20, y: -10 to 50

The D.E. solution shows the terminal velocity clearly. It occurs as v increases and **kv^n -> mg**

Enter new equation: **v** = (mg/k)^(1/n) You can vary 'n' and 'k' and see it all change. 2nd Order D.E. => SHM

A mass on a spring, with constant 'k', drops to its equilibrium position 'L' such that $mg = kL \dots (1)$

Pulled down a further A cm and let go. At position 'x' below equilibrium, the Equation of Motion (\downarrow) is => mg - k(L + x) = m \ddot{x} , using (1) gives: -kx = m \ddot{x} => \ddot{x} = -(k/m)x, or \ddot{x} + $\omega^2 x$ = 0, where w = $\sqrt{k/m}$

=> $\mathbf{x} = asin(\omega t + \mathbf{\phi})$ and $\dot{\mathbf{x}} = a\omega cos(\omega t + \mathbf{\phi})$ Initial conditions at t = 0: x = A, and $\dot{\mathbf{x}} = 0$ give A = $asin(\mathbf{\phi})$ and 0 = $a\omega cos(\mathbf{\phi}) => \mathbf{\phi} = \pi/2$ and a = A $\omega = v(k/m) = 2\pi f => Period, T = 1/f = 2\pi/\omega$

Adding in some damping

Damping can be modelled by a force that opposes the motion and is proportional to velocity, $d\dot{x}$ The Equation of Motion (\downarrow) is now: $mg - d\dot{x} - k(L + x) = m\ddot{x} => - d\dot{x} - k(x) = m\ddot{x}$ $=> \ddot{x} + (d/m)\dot{x} + (k/m)x = 0$ $=> \ddot{x} + 2\lambda\dot{x} + \omega^{2}x = 0$ where $2\lambda = d/m$ and $\omega^{2} = (k/m)$ $=> x = ae^{-\lambda t}sin(\omega t + \varphi)$

To explore all this in Autograph:

Set axes to x against t SHM: Enter: $\mathbf{x''} + \mathbf{w^2x} = \mathbf{0}$ (converts to $\mathbf{\ddot{x}} + \mathbf{w^2x} = \mathbf{0}$) Click on (0,3) and observe SHM. Vary w.

DAMPED SHM:

Enter: $\mathbf{x''} + 2\lambda \mathbf{x'} + \mathbf{w}^2 \mathbf{x} = \mathbf{0}$ (-> $\mathbf{\ddot{x}}+2\lambda \mathbf{\dot{x}}+\mathbf{w}^2 \mathbf{x}=\mathbf{0}$) Click on (0,3) and observe damped SHM. $\lambda=0$ (SHM, undamped), $\lambda=1$ (critical damping)

Used in this page, Autograph keyboard: λ , ν , π Others from Character Map: $\leftarrow \uparrow \rightarrow \downarrow$, \dot{x} , \ddot{x} , ω

Douglas Butler, Oundle Jan 2019