Why Are Shot Puts Thrown at 31° ? Using Autograph for Applications of the Parabola

A
utograph is a two- and threedimensional dynamic statistics and graphing utility, developed in England, that has grown out of direct classroom experience. A simple selectclassroom experience. A simple selecttools such as Autograph's unique Slow Plot, Scribble Tool, and dynamic Constant Controller help make the classroom experience interactive
Autograph can be used to introduce most students to their first nonlinear function. To their surprise, they will discover that parabolas are everywhere.

THE BEST SHOT-PUT ANGLE Most students who have been introduce to the quadratic function quickly realize that a thrown object follows a parabolic path. Further studies reveal that the longest throw can be achieved by projecting the object at an angle of 45° to the horizontal. It is a bit surprising, therefore, to discover that in the sporting world, when

Fig. 1 A right click of the mouse allows users to choose the Enter Equation option, enter the parametric equation, and edit its name.
the objective is to achieve a maximum distance, this rule is rarely followed. The shot put, for example, is an Olympic field event that involves launch ing a heavy metal ball. The weight of the ball varies with the age and gender of the participants, with Olympic events featuring a 16 -pound shot for men and an 8.82 -pound shot for women. The event is so named because the shot (the ball) is pushed (put) away from the competitor' body. In the Beijing Olympics in 2008 the men's gold medal was won with a put of 21.51 meters, while the women's winning put was 20.56 m . Competitors
in this event usually launch their shots at about a 31° angle to the horizontal. In the javelin toss, an Olympic event involving a long spearlike pole, the angle of elevation of the toss is even smaller. Similarly, contestants in the long jump, yet another Olympic field event, leap at an angle of around 30° or less. Why? To model this problem in Autograph first choose the Advanced mode on start up (to ensure that the degrees-radian us options are avalable), set the angle measurement to degrees (via the degrees button on the toolbar, located just below the Axes drop-down menu), and choose the right-click option: Enter Equation (see fig. 1) Now enter the two parametric equa tions, separated by a comma

Fig. 2 The Constant Controller allows us to hange the value of the constant and the ste ize by which it varies.

Here, g is the acceleration due to grav(in $\mathrm{m} / \mathrm{s}^{2}$), h is the height of the throw (put) off the ground (in meters), v is the elocity of projection (in meters per sec nd), and α is the angle of projection (in egrees). Press Edit Constants and set $g=$ $81, h=2, v=10$, and $\alpha=45$. Press OK
Then press Start-up Options. Autoraph will think that this equation is rigonometric and will automatically choose inappropriate settings for this plot. So, to achieve a smooth plot, choose Manual plotting and set t-start $=0, t$-finish $=10$, and t-step $=0.1(\mathrm{sec})$. Then OK his information and OK a second time o exit the Equation Entry dialog box nd to plot the curve. Click on Axes and hen Edit Axes; then set $x: \min$ to -1 , x max to $20, y: \min$ to -1 , and $y:$ max to 0 and click on Equal Aspect. Doing so will adjust the scales and window appropriately. One final step will make everything appear larger: Access the Appearance tab and set Themes to Whiteboard. Click on OK to exit to the graph.
Before moving on, right-click to
tain the Enter Equation option and

Fig. 3 The shot's maximum horizontal distance (marked by A) is obtained when the angle of elevation is 45°.
 ens the length of the put.

Options to set the dash style to dotted before plotting. The graph of this equa tion will be used to monitor the horizon tal progress of the shot.

Autograph's Constant Controller icon (see fig. 2) looks like a box with a k in it and arrows below. It is turned on by a button on the top toolbar (just below and slightly right of the Object dropdown menu) and can be used to vary the parameters α and v. For the chosen parameter, the up and down arrows vary

Fig. 4 The maximum put, however, is obtained when the angle of elevation is 39°.

Fiq. 6 A modest increase in the value of v will maximize the length of the put.
the value, and the left and right arrows vary the step, affording full dynamic control over the constant's values.
Classical physics suggests that a mis sile should be projected at 45° to achieve the maximum range. The assumption here is that the velocity of projection can be the same for all angles. Can the hunn body match this velocity? Think about throwing a ball for maximum distance, for example. At what angle of pro jection does the thrower feel the most power behind the throw. To investigate this issue, let's keep the velocity of projection constant at $10 \mathrm{~m} / \mathrm{s}$ and vary the angle of projection
Using the Constant Controller allows us to see that the shot achieves its maximum horizontal distance, as expected, at A, when $\alpha=45^{\circ}$, and its maximum ground distance at B, when $\alpha=39^{\circ}$ (see figs. 3 and 4). But when $\alpha=31$, the angle used by shot-putters, the ground distance is reduced (see fig. 5).
Now let's keep α fixed at 31° and increase v to try to improve on B. Sur prisingly, increasing v to only 10.2 m / s will accomplish this (see fig. 6). Whereas classical physics assumes constant v, the maximum throw may be determined as much by the speed of the throw as by the angle of projection.

ig. 7 Because the data are not quite linear we use a quadratic model.

Can we predict, for a typical athlete, the possible projection speeds from dif ferent projection angles? A Web search reveals that work done by researchers at Brunel University in London suggests an most linear relationship between the angle and the velocity (see fig. 7)
To explore this relationship, open a new 2D page in Autograph and use the right-click option Enter XY Data Set. If his information is in Excel, just select it and paste it into the space below the x. The column headers will accompany the data automatically. Otherwise, enter the data by yping them in. To set the column headers, fight-click in each column. To use the two column headers as the axes labels, check he two boxes on the right. With Perform uto-scale checked, click OK to create data set object with three data points, nicely scaled. Now, to illustrate the two ngles we are studying, use Enter equatio and plot $x=31$ and $x=45$ (see fig. 8)
The data are not quite linear, so let's ry to fit a quadratic to them. Select he data (click on any one of the three points) and use the right-click option Best Fit with Order $=2$. Click OK. To display the equation, select the quadratic and use the right-click option Text Bo btaining Quadratic: $\{\{y=-9.877 \mathrm{E}$ $\left.\left.05 x^{2}-0.07333 x+14.7\right\}\right\}$. Note the very mall coefficient of x^{2}. The section in

. 10 The distance along the ground can maximized when the angle of elevation is 31°.

Fig. 8 The quadratic model has a lead cof ficient very close to 0 .
red is dynamic information, which will change if the data change or are draged about. Use the option convert to static text and take the opportunity to tidy it up to $y=-0.0001 x^{2}-0.073 x+14.7$

We notice that as the angle drops from 45° to 31°, the possible projection veloc ity increases. Is this enough to improve performance at the lower angle, and is 31° the best angle? (Explore the Axes = Edit Axes dialogue box to manipulate th various style settings for the graph.)

To copy this relationship to the clipboard, double-click on the text box and select $-0.0001 x^{2}-0.073 x+14.7$ and cop (Ctrl-C). Click Cancel and return to the first graph page with the shot put on it. Double-click on the original equation- $x=(v \cos \alpha) t, y=h+(v \sin \alpha)$ $t-1 / 2 g t^{2}-$ to open up its equation entry box. Two instances of v need convertin to $-0.0001 x^{2}-0.073 x+14.7$, but with x changed to α. Select each v and replace with 0 ; then paste ($\mathrm{Ctrl}-\mathrm{V}$) the formula from the clipboard in between the paren theses. Change the four x characters to α. Press OK to plot.

Now, with only one parameter, α, to vary, we can really explore what's going on. Use the Constant Controller to set α

.11 Pausinctre that look like

Fig. 9 Using an angle of elevation of 45° produces a put of about 14.5 m .
to 45°, noting that the range along th ground is 14.6 m (see fig. 9). Varying α then reveals the greatest range is achieved at around 31°-the angle that most Olym pic shot-putters use (see fig. 10)

COMPETING THE SQUARE

Visualizing possibilities can help students learn about the various factored forms for a quadratic. On a new 2D page, be sure to press Slow Plot (indicated by the turtle icon) to enable stop-start plotting and also press the Whiteboard Mode button (indicated by the white screen icon) to improve the visibility of the graphing.

Whiteboard Mode should be set up so that it is unnecessary to press Shift to build up multiple selections and the onscreen keyboard is present. To do so, go to View $=>$ Preferences $=>$ Whiteboard and make sure that all four options are checked. Press OK

Use Enter Equation and type $y=x x$ $3 x-1$ to enter $y=x^{2}-3 x-1$ (enter $x x$ for x^{2}) and press OK. As soon as the plotting starts (because the graph is off screen, we see a black dot travelling alon the x-axis), press the pause button (or the space bar) (see fig. 11). With the plotting paused, we can ask students what they

Fig. 12 Adaing a vector to the graph clearly demonstrates the translation of the curve
know about the graph of this function The following answers are correct:

- x^{2} means it will be a happy qua-dratic-one that opens upward
- $-3 x$ will pull it up on the left and down on the right
- -1 means it intercepts the y axis at $(0,-1)$

Discuss these answers with the students. Are we ready to take the brakes off? Plot $y=x^{2}$, the father of all parabolas We will now try to transform $y=x^{2}$ to $y=$ We will now try to transform $y=x^{2}$ to $y=$
$x^{2}-3 x-1$ by using the form $y=(a-x)^{2}+$ $x^{2}-3 x-1$ by using the form $y=(a-x)^{2}+$ b or, if preferred, the symmetrical form: y - $b=(x-a)^{2}$. Enter one of these forms in the Equation Entry dialog box, but before leaving the box, use Edit Constants to set
both a and b to zero and press OK (twice). both a and b to zero and press OK (twice) initially draws right on top of $y=x^{2}$.

Then we can use the Constant Controller to vary a and b. To be sure that the students understand the process, be sure to discuss what will happen before a button is pressed. For example, what will happen to the graph if a is increase from 0 to 1 Will the graph move risht left, up or down, and why?

The dynamic nature of the Constant Controller comes into play here allow ing us to adjust the steps as we home in on the final values of a and b, when the new graph sits right on top of the origi nal quadratic. Note that the values are nal quadratic. Note that the values are
$=1.5$ and $b=-3.25$. 1.5 and $b=-3.25$.

Finally, using the Point mode, move the mouse over $y=x^{2}$ and click; doing so will place a selected point on the curve. Now use the right-click option Vector to
add a vector to that point (see fig 12) add a vector to that point (see fig. 12) nents from $[1,1]$ to $[a, b]$. Notice that
the vector stretches exactly to the trans formed quadratic. If you drag the point around $y=x^{2}$, it is clear that all points on $y=x^{2}$ are translated by this vector $[a$ b] to the new graph.

Editor's note: All the activities

 described in this article have been recorded as Jing videos and are available on the special YouTube channel. www. youtube.com/nctmbutler